Open main menu

SensUs Wiki β

Changes

Vancomycin

11 bytes added, 11:44, 4 December 2017
added references header
== 1.1 Structure ==
Vancomycin is naturally produced by the soil bacterium Amycolatopsis orientalis <ref name="Grace"> Grace, Y., Koteva, K.P., Thaker & Thaker, M.N. (2013). Glycopeptide antibiotic biosynthesis. The Journal of Antibiotics, 67, 31-41. DOI: 10.1038/ja.2013.117 </ref>. It is a glycosylated nonribosomal peptide, which means that it is biosynthesized by the bacterium without the use of mRNA or a ribosome, through means of nonribosomal peptide synthesis. It is a heptapeptide consisting of of the following amino acids: Leucine1 (Leu1), β-hydroxytyrosine2 (β-OH-Tyr2), Asparagine3 (Asn3), 4-hydroxyphenylglycine4 (HPG4), HPG5, β-OH-Tyr6, 3,5-dihydroxyphenylglycine7 (DPG7). Of these seven only Asn3 and Leu1 are proteinogenic amino acids, the rest being non-proteinogenic or non-coded amino acids. The stereoisomeric configuration of the amino acid residues in the heptapeptide scaffold of vancomycin is D-D-L-L-D-D-L.<ref name="Nolan"> Nolan, E. M., & Walsh, C. T. (2009). How Nature Morphs Peptide Scaffolds into Antibiotics. Chembiochem : A European Journal of Chemical Biolo1, 10(1), 34–53. http://doi.org/10.1002/cbic.200800438 </ref>
Once the basic heptapeptide scaffold is assembled, further post translational modifications take place on the molecule. First, residues 2 and 4, 4 and 6, and 5 and 7, undergo oxidative crosslinking, become covalently bonded to each other, forming the highly rigid, dome-like structure of vancomycin. This conformation is what gives vancomycin its high affinity for forming hydrogen-bonds with its target - the N-acyl-D-Ala-D-Ala termini of the peptidoglycan precursors in bacteria. The molecule in this state is biologically active and is termed the aglycone backbone of vancomycin<ref name="Reynolds"> Reynolds, P.E. (1989). Structure, Biochemistry and Mechanism of Action of Glycopeptide Antibiotics. European Journal of Clinical Microbiolo1 and Infectious Diseases, 8(11), 943-950. https://doi.org/10.1007/BF01967563 </ref> . Finally, the Leucine is methylated to N-methyleucine, and two successive glycosylations on the ph2late of the HPG residue give the finished vancomycin molecule. These further modifications are not essential for the antibiotic functionality of vancomycin though they do allow for stronger interactions with the target. <ref name="Nolan" />
== 1.2 Mechanism of action ==
Vancomycin kills and prevents the growth of gram-positive bacteria by inhibiting the cell-wall synthesis of these bacteria <ref name="Reynolds" />. The cell walls of gram-positive bacteria are comprised of several layers of peptidoglycan, a mesh-like polymer made up of sugars and amino acids. It is this layer that provides the necessary mechanical support for bacteria to be able to withstand fluctuations in osmotic pressures in excess of 5-15 atm without lysing (rupturing)<ref name="Kahne"> Kahne, D., Leimkuhler, C., Lu, W. & Walsh, C. (2005). Glycopeptide and Lipoglycopeptide Antibiotics. Chemical Reviews, 105, 425-448. </ref> .
The final two steps of bacterial peptidoglycan biosynthesis constitute a good target for any antimicrobial agent, as both processes are extracellular and thus accessible to compounds that are unable to penetrate the cell membrane. Furthermore, the peptidoglycan layer is vital 2ugh to survival that it is highly conserved across organisms, meaning that compounds such as vancomycin are effective against a variety of gram-positive bacteria. Lastly, targeting a process that involves multiple, related enzymes is advantageous as a single, spontaneous mutation in one enzyme will not lead to resistance.<ref name="Kahne" />
 
== References ==
 
<references />