Open main menu

SensUs Wiki β

Changes

Acute Kidney Injury

287 bytes removed, 18:35, 16 December 2023
no edit summary
== General information ==
The theme of SensUs 2024 is Kidney failure also referred to as acute kidney injury (AKI). 10% of the population globally is affected by chronic kidney disease, with over 750,000 people in the US alone. <ref name="Ref1"> Global Facts: About kidney Disease. (2023c, November 16). National Kidney Foundation. https://www.kidney.org/kidneydisease/global-facts-about-kidney-disease</ref>Kidney failure is characterized by one or both kidneys losing their renal function, namely, the ability to filter waste matter from the blood. This results in an accumulation of waste in the bloodstream, altering the ionic homeostasis of the blood. There are 5 stages of kidney failure depending on glomerular filtration rate (GFR) which measures the blood filtration rates of the kidneys (in (mL/min), with the preliminary signs advancing to kidney failure including fatigue, nausea, swelling, etc. <ref name="Ref2> End-stage renal disease - Diagnosis and treatment - Mayo Clinic. (2023, October 10). https://www.mayoclinic.org/diseases-conditions/end-stage-renal-disease/diagnosis-treatment/drc-20354538 </ref> Generally, the clearance of substances that are freely filtered but not secreted or reabsorbed by the kidneys is used to estimate the GFR in clinical settings, with creatinine meeting the criteria. <ref name="Ref4"> López-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology, 4(1), 57. https://doi.org/10.5527/wjn.v4.i1.57 </ref>
Creatinine is a product of the metabolism of creatine, which is produced in the liver from three amino acids, methionine, arginine, and glycine, and stored in muscle to be used as a source of energy once phosphorylated. Creatinine is normally excreted through the kidneys. Healthy kidneys are responsible for filtering creatinine out of the bloodstream, as it is a freely filtered metabolite that is not secreted or reabsorbed. Consequently, during kidney failure when the GFR reduces, there is a buildup of high levels of creatinine in the blood. A standard range of serum creatinine levels (SCr) for healthy men is 0.7 - 1.3 mg/dL (61.9 - 114.9 µmol/L), and for healthy women is 0.6 – 1.1 mg/dL (53 – 97.2 µmol/L). <ref name="Ref5"> Creatinine blood test. (n.d.-b). Mount Sinai Health System. https://www.mountsinai.org/health-library/tests/creatinine-blood-test#:~:text=Normal%20Results,less%20muscle%20mass%20than%20men </ref> As diet and hydration has a negligible impact on serum creatinine levels, it serves as a reliable indicator of renal function. There is no cure for chronic kidney disease (CKD), although maintaining a proper diet and medications can slow the progression of the disease. A person with kidney failure needs to undergo dialysis treatment or kidney transplantation. These two treatments allow the normal, healthy functioning of the kidneys. <ref name="Ref6">World Kidney Day. (2019, June 7). Chronic Kidney Disease - World Kidney Day. World Kidney Day -. https://www.worldkidneyday.org/facts/chronic-kidney-disease/ </ref>
== History of Acute Kidney Injury ==
</ref> These can be related to neurogenic bladder conditions, obstructed urinary catheters, bladder stones, or cancers of the bladder, prostate or ureter. <ref name = "Ref20"/>
The GFR in mL/min can be calculated with the following formula: '''GFR ''' = ( U<sub>X</sub> · V̇ ) / P<sub>X</sub>. Here, U<sub>X</sub> and P<sub>X</sub> are the concentrations of substance X in urine and plasma in mg/mL respectively, with V̇ being the urine flow in mL/min. Ideally X is a substance that is freely filtered but not secreted or reabsorbed by the kidneys, subsequently having the same concentration in the plasma and glomerular filtrate. <ref name = "Ref21">Pocock, G., Richards, C.D. and Richards, D.A. (2013) Human physiology. Oxford: Oxford University Press.</ref>These criteria are largely met by creatinine, and the creatinine clearance (C<sub>Cr</sub>) obtained from this formula is generally used to measure GFR in clinical practice. <ref name = "Ref22">Delgado, C. et al. (2022) ‘A unifying approach for GFR estimation: Recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease’, American Journal of Kidney Diseases, 79(2). doi:10.1053/j.ajkd.2021.08.003.</ref> Other diagnostic tools also include serum creatinine levels (SCr) as in the case of renal dysfunction, the creatinine clearance by the kidneys is reduced and therefore the creatinine concentration in the blood rises . <ref name = "Ref21"/>
== References ==