Changes

Jump to: navigation, search

Acute Inflammation with a Focus on Sepsis

5,513 bytes added, 19:52, 18 November 2021
no edit summary
In the nineteenth century, large growth in the knowledge on the origin and transmission of infectious diseases occurred. One of the physicians who contributed significantly to this development was Ignaz Semmelweiss (1818-1865). He was a physician in Vienna, Austria. In 1841, while working on a maternity ward in a hospital he noticed that there was a high rate of death from childbed fever. Nowadays this is also known as puerperal sepsis. He made the observation that women whose deliveries were assisted by midwives had a significantly lower percentage of infection (2%) than deliveries assisted by medical students (16%). Back then, the medical students practiced both autopsies and childbirth deliveries on the same day without washing their hands. When one of Semmelweis’ colleagues died of an infection, Semmelweis made the connection between the medical students, the deliveries, the autopsies, and puerperal sepsis. Semmelweis’ comment on this situation was “The fingers and hands of students and doctors, soiled by recent dissections, carry those death-dealing cadaver’s poisons into the genital organs of women in childbirth”. When a handwashing policy was implemented, the rates of puerperal sepsis dropped to under 3%.<ref name="Arti9">Sepsis and septic shock: a history. Critical Care Clinics, 25(1), 83–101, viii, 2009, Funk, D. J., Parrillo, J. E., & Kumar, A., https://doi.org/10.1016/j.ccc.2008.12.003</ref><ref name="Arti7"> The last 100 years of sepsis. American Journal of Respiratory and Critical Care Medicine, 173(3), 256–263, 2006, Vincent, J.-L., & Abraham, E., https://doi.org/10.1164/rccm.200510-1604OE </ref><ref name="Arti8"> Sepsis History, https://www.news-medical.net/health/Sepsis-History.aspx, 2018, Ryding, S. </ref>
In 1964 Dr. Edward Frank from Boston published a management strategy for septic shock. This strategy consisted of continuous monitoring of systemic arterial pressure, central venous pressure, cardiac output, urinary output, blood volume, blood chemistries, gases, pH and electrolytes. Some of these are still used nowadays, such as blood monitoring and urinary output. Aided by the discovery of antibiotics by Alexander Fleming, it was also recommended to find the cause of the infection.<ref name="Arti10"> The History of Sepsis Management Over the Last 30 Years. Elsevier, 15(2), 116–117, 2014, Zehava L., N., https://daneshyari.com/article/preview/3235901.pdf </ref>  == Mechanism of Acute Inflammation == When the human body is subjected to harmful stimuli, an inflammatory response is activated to remove these stimuli and, if necessary, initiate a healing process. Cellular and molecular events take place to minimize injury and infection. Common characteristics of inflammation on tissue level are redness, heat, pain and loss of tissue function, which all result from local immune, vascular and inflammatory cell responses to infection or injury.<ref name="Arti11">Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 9(6), 7204–7218, 2018, Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L., https://doi.org/10.18632/oncotarget.23208 </ref>The mentioned events are a consequence of specific complex molecular pathways involving different types of receptors, transcription factors, leukocytes and eventually cytokines that induce inflammatory responses. Even though different stimuli may evoke different inflammation pathways in the human body, in general, a common mechanism is applied which can be summarized in four steps as stated in research done by Chen et al., 2018 <ref name="Arti11">Inflammatory responses and inflammation-associated diseases in organs, Oncotarget, 9(6), 7204–7218, 2018, Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X., & Zhao, L., https://doi.org/10.18632/oncotarget.23208 </ref>:  1. Cell surface pattern receptors recognize harmful stimuli 2. Inflammatory pathways are activated 3. Inflammatory markers are released 4. Inflammatory cells are recruited  Pathogen-associated molecular patterns (PAMPs) trigger inflammatory responses through activation of specific pattern recognition receptors. As a result, the production of proinflammatory cytokines is induced. Proinflammatory cytokines are produced predominantly by activated macrophages and are involved in the upregulation of inflammatory reactions.<ref name="Arti12">Cytokines, inflammation, and pain. International Anesthesiology Clinics, 45(2), 27–37, 2007, Zhang, J.-M., & An, J., https://doi.org/10.1097/AIA.0b013e318034194e </ref>Interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) are cytokines that mediate receptor activation in order to trigger crucial intracellular signaling pathways that may start the healing process.  However, in the case of acute inflammation, the response to an infection is dysregulated and often disproportional to the severity of the infection. The response gets overheated, overactivated, and can damage the body from within. Potential consequences of this overly strong reaction include infections, organ dysfunction (severe sepsis), or septic shock which is a state of circulatory failure where circulatory, cellular and metabolic abnormalities are associated with an increased risk of death. These reactions are often caused by coagulation (i.e. formation of blood clots) dysregulation. The hypercoagulability of sepsis is thought to be driven by the release of tissue factor from disrupted endothelial cells.<ref name="Arti13">Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Medicine, 7, 2050312119835043–2050312119835043, 2019, Gyawali, B., Ramakrishna, K., & Dhamoon, A. S., https://doi.org/10.1177/2050312119835043 </ref>When the human body suffers from severe sepsis, activated monocytes and endothelial cells, along with circulating microvesicles, become sources of tissue factor<ref name="Arti14">Role of extracellular vesicles in the development of sepsis-induced coagulopathy. Journal of Intensive Care, 6, 68, 2018, Iba, T., & Ogura, H., https://doi.org/10.1186/s40560-018-0340-6 </ref>.  -- This factor then causes the systemic activation of the coagulation cascade resulting in the production of thrombin, activation of platelets, and formation of platelet–fibrin clots. These structures can result in local perfusion defects leading to tissue hypoxia and organ dysfunction (Gyawali et al., 2019). Moreover, research has shown that dysregulated apoptotic immune cell-death plays a crucial part in immune dysfunction and mortality of sepsis. Apoptosis is a “programmed cell death” to limit damage of surrounding tissue during the immune response (Elmore, 2007). It is a vital component of many processes in the human body such as cell turnover, proper development and functioning of the immune system (Elmore, 2007). Most cells that undergo enhanced apoptosis in sepsis are of lymphoid origin, hence less immune cells are left to fight off the infection itself (van der Poll & Opal, 2008). Since no effective treatment for sepsis exists yet, early diagnosis and recognition is crucial (Thompson et al., 2019).  This is where IL-6 plays an important part. As mentioned, IL-6 is a cytokine that functions as a crucial mediator during the acute phase of response to inflammation in sepsis (J. Song et al., 2019). Research on the clinical value of IL-6 in patients with sepsis and septic shock describes that IL-6 is considered controversial regarding its diagnostic and prognostic values, where meta-analysis of diagnostic value of IL-6 has shown that IL-6 only offers moderate success in differentiating sepsis from non-infectious systemic inflammatory response syndrome (SIRS) (Ma et al., 2016). Hence it is recommended that IL-6 is used as a biomarker to confirm infection rather than differentiate between sepsis and SIRS (Ma et al., 2016).          
== References ==
<references />

Navigation menu